If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=410
We move all terms to the left:
X^2+X-(410)=0
a = 1; b = 1; c = -410;
Δ = b2-4ac
Δ = 12-4·1·(-410)
Δ = 1641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1641}}{2*1}=\frac{-1-\sqrt{1641}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1641}}{2*1}=\frac{-1+\sqrt{1641}}{2} $
| 3/5x-18=36 | | 4w2−3w−2=0 | | 2x-2=13x+9 | | 2x-2=13x+9 | | 4.8x-8.4=34.8 | | 17y=70 | | 12q=48 | | 3/4=k/11 | | 5x-12=2x+45 | | 10/11=3/x | | 3t/2+t/3=t-5 | | 15+0.05x=0.1x | | 310 =9k | | 6-m=22/10 | | x=38.5 | | 3+d/2=8 | | 3-4n=19 | | 10x2=2(6x+2) | | (−3+3i)+(3−i)= | | (−3+3i)+(3−i)=0 | | 1/3a-3/2-61/2=-47/6 | | 5=3-(1/3)x | | 3(4w+6)4=8 | | -2+20+4n=42 | | k2+13k+30=0 | | x−13=6 | | 5x-1=4(x=1) | | 24Xy=72 | | 3(2g-3)=27 | | 3(2x+10)=54* | | 3(2g—3)=27 | | 175m-75m+48500=50750-150m |